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Abstract: A set of chalcone derivatives were tested for their antimalarial activities1. Quantitative structure
activity relationship (QSAR) analysis was applied to forty-two of the abovementioned derivatives using a
combination of various topological descriptors. A multiple linear regression (MLR) procedure was used to
model the relationships between molecular descriptors and the antimalarial activity of the chalcone derivatives.
The stepwise regression method was used to derive the most significant models as a calibration model for
predicting the antimalarial activity of this class of molecules. The best QSAR models were further validated by
the calculation of statistical parameters for the established theoretical models. High agreement between
experimental and predicted activity values, obtained in the validation procedure, indicated the good quality of
the derived QSAR models.
Keywords: QSAR; chalcone derivatives; multiple linear regressions; statistical parameters.

INTRODUCTION

Quantitative structure–activity relationship and
Quantitative structure–property relationship
(QSAR/QSPR) studies are indubitably of great
importance in modern chemistry and biochemistry.
To obtain a significant correlation, it is essential
that appropriate descriptors are employed, for such
considerations the molecular structure is often
represented as a simple mathematical object, such
as  a  number,  sequence,  or  a  set  of  selected
invariants of matrices, generally referred to as
molecular descriptors2-4. Multiple regression
analysis is usually used in such studies in the hope
that it might point to structural factors that
influence a particular property. It may help one in
model building and assist in the design of

molecules with prescribed desirable properties,
which is an important goal in drug research. In
chemistry, anything that can be said about the
magnitude of the property and its dependence upon
changes in the molecular structure5 depends on the
chemist’s capability to establish valid relationships
between structure and property. In many physical-
chemistry, organic, biochemical and biological
areas, it is increasingly necessary to translate those
general relations into quantitative associations
expressed in useful algebraic equations known as
Quantitative Structure-Activity (-Property)
Relationships (QSAR/QSPR)6. To get an insight
into the structure-activity relationship we need
molecular descriptors that can effectively
characterize molecular size, molecular branching or

mailto:amit_chem@yahoo.com


Amit Shrivastava et al /Int.J. ChemTech Res.2012,4(2) 663

the variations in molecular shapes, and can
influence the structure and its activities. Many
descriptors reflect simple molecular properties and
thus they can provide some meaningful insights
into the physical chemistry nature of the
activity/property under consideration. Chemical
graph theory7 advocates an alternative approach to
QSAR/QSPR studies based on mathematically
derived molecular descriptors. Such descriptors
often referred to as topological indices8. Many
descriptors reflect simple molecular properties and
can thus provide insight into the physicochemical
nature of the activity/ property under consideration.
If molecular structure is critical for understanding
of a particular structure-activity and property-
activity relationship, then one should consider
structural invariants derived from molecular
structure9. Several graph theoretical invariants have
been generalized so that they produce structure-
dependent descriptors10-13. Ideally, the activities and

properties are connected by some known
mathematical function, F: Biological activity = F
[structure (in present study topological &
physicochemical descriptors are used as the
structural parameters)] Biological activity can be
any measure such as log1/C, Ki, IC50, ED50,
EC50, log K and Km.
The relationship or function is more often than not
a mathematical expression derived by statistical or
related techniques. In present study the multiple
linear regression (MLR) technique is used. The
parameters describing structural properties are used
as independent variables and the biological
activities are dependent variables.
In the present investigation a QSAR study is
performed over a set of 42 chalcone derivatives.
Their Biological activity is measure as IC50

a(µM).
For simplification of mathematics calculation we
take  Log  IC50

a(µM). This study based on the
application of topological parameters in QSAR.

Data set of chalcone derivative (table 1)

O

RR'

Ring B Ring A

Compound R' R
IC50
a(µM) Log IC50

 a(µM)
1 2',3',4'-trimethoxy 2,4- dichloro 5.4 0.73239
2 2',3',4'-trimethoxy 4-dimethylamino 18 1.25527
3 2',3',4'-trimethoxy 4-trifluoromethyl 3 0.47712
4 2',3',4'-trimethoxy 2,4-dimethoxy 16.5 1.21748
5 2',3',4'-trimethoxy 4-methyl 25.6 1.40823
6 2',3',4'-trimethoxy 4-ethyl 16.5 1.21748
7 2',3',4'-trimethoxy 3-quinolinyl 2 0.30103
8 2',3',4'-trimethoxy 4-methoxy 25 1.39794
9 2',3',4'-trimethoxy 4-fluoro 9.5 0.97772
10 2',3',4'-trimethoxy 4-phenyl 26.2 1.41830
11 2',3',4'-trimethoxy 4-nitro 22.5 1.35218
12 2',3',4'-trimethoxy 3,4-dichloro 14.5 1.16136
13 2',3',4'-trimethoxy 4-chloro 14.5 1.16136
14 2',3',4'-trimethoxy 2-chloro 41.5 1.61805
15 2',3',4'-trimethoxy 3-chloro 24.4 1.38738

16 2',3',4'-trimethoxy H 15.8 1.19865
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17 4'-butoxy 2,4-dimethoxy 108 2.03342
18 2',4'-dimethoxy 2,4-dichloro 18.8 1.27415
19 2',4'-dimethoxy 4-trifluromethyl 5.9 0.77085
20 2',4'-dimethoxy 2,4-difluoro 6.2 0.79239
21 2',4'-dimethoxy 2,4-dimethoxy 2.1 0.32222
22 2',4'-dimethoxy 4-dimethylamino 70 1.84509
23 2',4'-dimethoxy 4-cyano 94.5 1.97543
24 2',4'-dimethoxy H 55.5 1.74429
25 4'-ethoxy 2'4-difluoro 28.1 1.44871
26 4'-ethoxy 4-methoxy 33 1.51851
27 4'-ethoxy 3-quinolinyl 24.9 1.39619
28 4'-ethoxy 4-fluoro 24.1 1.38202
29 4'-ethoxy 2,4-dichloro 96 1.98227
30 4'-ethoxy 4-trifluromethyl 24 1.38021
31 4'-ethoxy 2,4-dimethoxy 30 1.47712
32 4'-ethoxy 4-methyl 38 1.57978
33 4'-ethoxy 4-nitro 39 1.59106
34 4'-ethoxy 4-dimethylamino 30 1.47712
35 4'-ethoxy H 43 1.63347
36 2',4'-dihydroxy 2,4-difluoro 16 1.20412
37 2',4'-dimethoxy 3-quinolinyl 2.2 0.34242
38 2',4'-dimethoxy 4-quinolinyl 27 1.43136
39 2',4'-dimethoxy 4-methoxy 128 2.10890
40 2',4'-dimethoxy 4-dimethylamino 55.3 1.74273
41 4'-methoxy 4-methoxy 21.7 1.33645
42 4'-methoxy 4-methyl 70 1.84509

MATERIAL AND METHOD

We studied a series of chalcones with the activity
express as IC50

a (µM) was taken from the literature.
These chacone derivatives with their activity are
presented in table 1. Topology Indices: All the
topological indices used are calculated from the
hydrogen suppressed molecular graph though their
calculations are exclusively discussed in the
literature. Topology indices are used for convert
structure property into numerical form. Calculated
topological descriptors included wiener index14-15

(W), mean distance degree deviation (MDDD),
schultz molecular topological index16 (SMTI), (Xu),
kier flexibility index (PHI), eccentric connectivity
index17 (CSI), mean information contain on the
distance degree magnitude (IDDM), unipolarity
(UNIP), high per detour index (WW), log of product
of row sum (LPRS), gutman molecular topological
index (GMTI), solvation connectivity index chi-0
(χ0Sol), polarity no. [P3], (DECC), total information

content on distant magnitude18 (IDMT),  mean
information content on distance equality18 (IDE),
solvation connectivity index chi-2 (χ2Sol), randic
connectivity indices19 fifth order  (χ5A), average
randic connectivity indices19 first  order  (χ1A), mean
information contain on the distance degree equality
(IDDE), second mohar index (TI2), mean wiener
index  (WA),  harary  index  (HAR1),  first  zegreb
index (Zm1), randic connectivity indices chi- 5 (χ5),
randic connectivity indices19 chi-3 (χ3), total walk
count (TWC),  average randic connectivity indices19

zero order (χ0A),

Topological molecular descriptors are used in
QSAR studies because of their accessibility, being
easily computed by available software programs.
The  set  of  molecular  descriptor  which  are  used  in
the  study  are  calculated  by  DRAGON  software20.
Stepwise multi regression analysis method was
used to perform QSAR analysis. The stepwise
multiple linear regressions (MLR) are a commonly
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used variant of MLR. Each variable is added to the
equation  at  a  time  and  a  new  regression  is
performed. The new term is retained only if the
equation  passes  a  test  for  significance.  This
regression method is especially useful when the
number of variables is large and when the key
descriptors  are  not  known.  This  is  the  basis  of
maximum-R2 method for deriving most appropriate
QSAR model. When the number of independent
variables is greater than the number of molecules,
multiple linear regressions cannot be applied then
we applied stepwise multiple regression.

The best model was selected on the basis of various
statistic  parameter  such  as  PSE  (Prediction  square
error), K (Degree of lack of relationship), E (Index
of forecasting efficiency), PE (Probable error of
estimation), T test, Adjusted R2, Q (Quality of
proposed model), Spress (Uncertainty of
prediction), PRESS (The Expression of PRESS), F
test,  SEE  (Standard  error  of  estimation)  these  are
statistic parameter show the predictivity and
significance of the model.

RESULT AND DISCUSSION

When  the  data  was  subjected  to  stepwise  multiple
linear regression analysis, in order to develop
QSAR between antimalarial activity of various
compound as dependents variables and topology
indices as independent variables, several equation
is obtained.

Various widely used topological indices tested in
the present study. In the proposing QSAR model
for the modeling the antimalarial activity of
compound we used the maximum R2 method. We
used the cross validation parameter for
investigating predictive power of various
parameters and prove our finding. For the QSAR
study of the same series we tested the multivariate
combination of the parameter. The result obtain
from the multivariate combination are encouraging
and better model are show below with their
statistics.

Model -1

Log IC50
a(µM)= -

14.764(±8.719)+0.186(±0.129)*Ramification+0.282
(±0.029)* χ0Sol-0.216(±0.047)*Polarity+0.347
(±0.057)*MDDD-1.485(±0.270)*Xu-0.711(± 0.139)
*PHI+0.259(±0.129)*S2K-1.719(±0.583)*IDDM-
0.00006(0.00002)*IDMT +0.466(±0.129)*TWC -
0.604(±0.260)*χ5 -0.009(±0.003)*UNIP
+0.013(±0.007)* VDA

                               …………………………… (1)

 R2= 0.912, E=0.70.41, PE= 0.0089, T test=20.414,
Adjusted R2=0.872, Q=5.947, SPRESS=0.1335,
PSE=0.1314, PRESS=0.726, Ftest=1433.92,
SEE=0.164, K=0.295, R=0.955

Model -2

Log IC50
a(µM)= 10.555(±2.179) -

0.549(±0.103)*Ramification -0.288(±0.035)* χ0Sol
-0.116(±0.037)*XMOD +0.309(±0.060)*MDDD -
0.103(±0.029)*LPRS-0.00006 (±0.00002)*W
+0.0003(±0.00009)*GMTI -2.019(±0.604)*IDDM-
0.008 (±0.003)* UNIP-0.661(± 0.152)*PHI
+0.649(±0.189)*S2K +0.031(±0.014)*MR

                                   …………………………… (2)

R2= 0.900, E=0.68.38, PE= 0.0101, T test=19.209,
Adjusted R2=0.859, Q=5.627,
SPRESS=0.1401, PSE=0.138, PRESS=0.799,
F test=1157.98, SEE=0.1168, K=0.316,
R=0.949

Model -3

Log IC50
a(µM)= 70.1841(±9.684)

+0.485(±0.074)*χ3Sol -0.0004(±0.0002)*BP-0.384
(±0.066)*DECC+3.557(±0.425)*χ1A-0.637 (±0.093)*
PHI-13.079(±2.645)* AECC+ 1.219 (±0.329)*Qindex-
0.00005 (±0.00002)*HVcpx-90.859(±14.243)*WW
+0.255 (±0.192)*TPC +0.019(±0.014)*IDDE

                                             ……………………… (3)

R2= 0.887, E=0.66.43, PE= 0.0114, T test=17.744,
Adjusted R2=0.846, Q=5.352,
SPRESS=0.1452, PSE=0.143, PRESS=0.858,
F test=954.53, SEE=0.176, K=0.335,
R=0.942

Model - 4

Log IC50
a(µM)= 6.487(±14.847) -

0.577(±0.169)*Qindex +3.591(±0.405)*χ2Sol
+0.369(±0.068)*DECC-0.599(±0.094)* PHI+0.750
(±0.328)*HVcpx-13.213 (±2.733)*AECC +1.186
(±0.353)*χ3-0.00003(±0.00001)*WW -104.906
(±30.623) *χ1A -0.011(0.008)*BP +0.008(±0.006)*Tc

                                   …………………………… (4)

R2= 0.884, E=0.66.02, PE= 0.0117, T test=17.502,
Adjusted R2=0.842, Q=5.278,
SPRESS=0.1478, PSE=0.1454, PRESS=0.889, F
test=916.277, SEE=0.178, K=0.339,
R=0.941
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Model - 5

Log IC50
a(µM)= 74.979(±15.002) -0.550(±0.173)*

Qindex +3.554(±0.409)*χ2Sol +0.375(±0.069)*
DECC -0.588(±0.092)*PHI +0.583(±0.316)*
HVcpx-11.821(±2.7 07)*AECC+1.014(±0.351)*χ3-
0.0003(±0.0001)*WW-106.101(±31.293)*χ1A

                                            …………………..…(5)

R2= 0.869, E=0.63.93, PE= 0.0132, T test=16.354,
Adjusted R2=0.833, Q=5.094,
SPRESS=0.1486, PSE=0.146, PRESS=0.898,
F test=753.453, SEE=0.183, K=0.361,R=0.932

In above equation, + sign indicate that activity is
proportional in successive regression analysis. We
have carried out several multi parametric regression
analysis. In all such multi parametric regression
analysis better result are obtained than the mono
parametric model. The observed and calculated
activities of these models are given in table 2 and
their graph between observed and calculated
activity value are recorded in Figure 1, 2 3, 4 and 5.

Table (2) for observed and calculated activity

Comp.
No.

Observed
Log IC50

a(µM)

Predicted
Activity
in Log
IC50
a(µM)
for
Model 1

Predicted
Activity
in Log
IC50
a(µM)
for
Model 2

Predicted
Activity
in Log
IC50
a(µM)
for
Model 3

Predicted
Activity
in Log
IC50
a(µM)
for
Model 4

Predicted
Activity
in Log
IC50
a(µM)
for
Model 5

1 0.73239 0.9978 0.99666 0.99759 1.02913 1.06522
2 1.25527 1.46697 1.59981 1.46179 1.53754 1.57907
3 0.47712 0.55979 0.59466 0.49739 0.52806 0.55622
4 1.21748 1.16828 1.0356 1.09872 1.10637 1.13582
5 1.40824 1.44031 1.44451 1.33157 1.34074 1.34961
6 1.21748 1.18812 1.30485 1.30559 1.24011 1.23926
7 0.30103 0.41465 0.18564 0.15981 0.27513 0.28676
8 1.39794 1.14473 1.22248 1.23973 1.18454 1.17873
9 0.97772 1.19427 0.94349 1.13909 1.12504 1.11659

10 1.4183 1.11419 1.34749 1.40843 1.53304 1.49221
11 1.35218 1.0805 1.40638 1.22205 1.30795 1.04601
12 1.16137 0.9582 1.07924 1.13515 1.02692 1.06287
13 1.16137 1.26684 1.25873 0.99924 1.06121 1.07028
14 1.61805 1.62399 1.60081 1.47603 1.44598 1.4352
15 1.38739 1.31197 1.13015 1.1835 1.22453 1.27428
16 1.19866 1.35988 1.15905 1.42323 1.4415 1.41619
17 2.03342 2.04203 1.96679 2.01631 2.01501 2.05903
18 1.27416 1.3129 1.20152 1.39696 1.43922 1.4189
19 0.77085 0.88946 0.75411 0.72936 0.68469 0.70603
20 0.79239 0.74558 0.64936 0.60302 0.60259 0.6059
21 0.32222 0.42927 0.65848 0.76119 0.68906 0.73208
22 1.8451 1.68306 1.702 1.64118 1.68817 1.72887
23 1.97543 2.11367 2.0936 2.08807 1.99615 2.05936
24 1.74429 1.76422 1.65434 1.72445 1.6075 1.54734
25 1.44871 1.42459 1.45309 1.46474 1.42312 1.42134
26 1.51851 1.69044 1.73178 1.45479 1.41019 1.41464
27 1.3962 1.36605 1.26874 1.22644 1.13352 1.13009
28 1.38202 1.37433 1.51481 1.5011 1.54349 1.53733
29 1.98227 1.97304 1.99304 1.84272 1.84616 1.85796
30 1.38021 1.40929 1.33879 1.44284 1.49592 1.50748
31 1.47712 1.37919 1.28034 1.23243 1.2145 1.25365
32 1.57978 1.45985 1.61402 1.69358 1.7606 1.77036
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33 1.59106 1.75271 1.65423 1.72903 1.63292 1.57997
34 1.47712 1.47942 1.34417 1.40772 1.51066 1.57997
35 1.63347 1.61914 1.74522 1.63921 1.68309 1.63676
36 1.20412 1.0251 1.11016 1.15642 1.14387 1.19816
37 0.34242 0.3483 0.5522 0.59237 0.48192 0.50091
38 1.43136 1.4652 1.47564 1.51797 1.48964 1.43618
39 2.1089 2.02525 1.92239 2.10451 2.07182 2.05936
40 1.74273 1.68306 1.702 1.64118 1.68817 1.72887
41 1.33646 1.43191 1.42628 1.42908 1.44056 1.3879
42 1.8451 1.73988 1.80079 1.80186 1.81714 1.75466

Graph between observed and                                  Graph between observed and
calculated value of LogIC50

a(µM)                           calculated value of LogIC50
a(µM)

Model-1 (Figure-1)                                                    Model-2 (Figure-2)

Graph between observed and calculated                Graph between observed and
value of LogIC50

a(µM)                                             calculated value of LogIC50
a(µM)

Model-3 (Figure-3)                                                    Model-4 (Figure-4)

Graph between observed and
calculated value of LogIC50

a(µM)
Model-5 (Figure-5)
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The model expressed by equation 1, this model has
the highest R2 value with good statistics. The best
model is one which has the best statistics as well as
best predicting power. Thus we have obtained
predictive correlation coefficient (R2) for the model
express Equation (1-5) by correlating observed
activity with calculated one. The R2 obtained are
presented in figure (1-5). This show the model
expressed by Equation 1 is most appropriate model
for modeling activity. The predictive power of the
model can also be justify by calculating PSE, K, E,
PE,  T test,  F test, PRESS, SPRESS, SEE, Adjusted
R2.The above all statics for the model mentioned
with the 1-5 models. The comparative analysis of
statistic associated with model show that the model

based on Equation 1 is most suitable for modeling
of activity. These models are also help to design of
new molecule of desired activity. These topological
parameters are related to steric, and electronic
attitude of molecule. We predict value of activity of
unknown compound by the use of value of
topological indices. The above discussion
supported the utility of topological parameters
which are used in research work.

ACKNOWLEDGEMENT
We are grateful to Department of Chemistry, Govt.
Madhav Science P.G. College, Ujjain (M.P.) for the
use of the research facilities.

REFFERENCES

1. J. Med. Chem. 2001,44, 4443-4452.
2. Randic´, M. J. Chem. Inf. Comput. Sci. 1997, 37,

672.
3. Balaban, A. T. et al; Topics Curr. Chem. 1983,

114, 21.
4. Balaban, A. T. Historical developments of

topological indices. Topological Indices  and
Related Descriptors in QSAR and QSPR;
Devillers,  J.,  Balaban,  A.  T.,  Eds;  Gordon  and
Breach: Amsterdam, the Netherlands, 1999; p
403.

5. Balaban, A. T. J. Mol. Struct. (THEOCHEM)
1988, 165, 243.

6. Basak, S. C. Information theoretic indices of
neighborhood complexity and their applications.
In Topological Indices and Related Descriptors in
QSAR and QSPR;Devillers, J., Balaban, A. T.,
Eds; Gordon and Breach: Amsterdam, the
Netherlands,1999; p 563.

7. Trinajstic  ,́  N.  In Chemical Graph Theory; CRC
Press: Boca Raton, FL, 1992; p225.

8. Basak. S. C. et al. Use of graph-theoretic
geometrical molecular descriptors in structure-
activity relationships. In From Chemical Topology

to Threedimensional Geometry; Plenum Press:
New York, 1977; p 73.

9. Randic´,  M.;  Razinger,  M. On characterization of
3D molecular structure. In From Chemical
Topology to Three-dimensional Geometry;
Plenum Press: New York, 1977;p 159.

10. Randic´, M. Int. J. Quantum Chem: Quantum
Biol. Symp. 1988, 15, 201.

11. Randic´, M. et al. Computer Chem. 1990, 14, 237.
12. Randic´, M. J. Chem. Inf. Comput. Sci. 1995, 35,

373.
13. Randic´, M. New J. Chem. 1995, 196,

781.parameters in QSAR.
14. Wieney, H.J. Am. Chem. Soc., 69. (1947), 2636-

2638.
15. Wieney, H.J. Phys. Chem., 15, (1947), 766.
16. Schultz, H.P., J. Chem. Inf. Compute. Sci., 29,

(1989) 227-228.
17. Sharma, V. et al. Chem. Inf. Comput. Sci., 37

(1997), 273-282.
18. Banchev, D. Information Theoretic Indices fro

characterization of chemical structureRSP-Wiley,
Chichetsey (U.K.) (1983).

19. Randic´, M. Stud. Phys. Theor. Chem. 1988, 54,
101.

20. Dragon 5 software, http://www.disat.unimib.it
/chm/Dragon.htm

*****


